Компания "TORA"
Responsibilities:
Collaborate with product managers, software engineers, and operations teams to define AI-driven features that improve data quality and operator workflows in the ELD (Electronic logging device for truck drivers in US) dashboard.
Analyze historical “broken” vs. “fixed” event data to design and build supervised learning pipelines that identify, classify, and suggest corrections for invalid or non-compliant driving events (e.g., hours-of-service, shift/cycle violations).
Develop data-processing workflows for cleaning, validating, and labeling telematics time-series data at scale.
Architect, train, validate, and deploy machine learning models (e.g., anomaly detection, sequence modeling, classification) that can automatically propose fixes or flag events requiring human review.
Integrate model outputs into the application’s dashboard, providing clear, actionable recommendations and confidence metrics to operators.
Monitor and evaluate model performance in production; implement retraining strategies and feedback loops based on operator corrections.
Write clean, maintainable code and documentation for all ML components, and participate in code reviews and knowledge sharing.
Stay up to date with the latest advances in machine learning and AI, proposing novel approaches to streamline event-correction workflows and reduce operator effort.
Requirements:
Bachelor’s or Master’s degree in Computer Science, Data Science, Machine Learning, or a related quantitative field.
3+ years of hands-on experience as an ML Engineer or Data Scientist, ideally working with time-series or event-based data.
Proficiency in Python and ML frameworks such as scikit-learn, TensorFlow, or PyTorch.
Strong experience with data manipulation and ETL using pandas, SQL, and/or Spark.
Demonstrated expertise in anomaly detection, sequence modeling (e.g., RNNs, transformers), or classification tasks.
Familiarity with containerization (Docker) and orchestration tools (Kubernetes); experience deploying models to cloud platforms (AWS, GCP, or Azure).
Knowledge of CI/CD practices for ML workflows (e.g., MLflow, Kubeflow, GitOps).
Excellent analytical problem-solving skills, attention to detail, and ability to translate business needs into technical solutions.
Strong communication skills and ability to work collaboratively in cross-functional teams.
Preferred: Experience with telematics or transportation-industry data, ELD/FMCSA regulations, and real-time streaming data (e.g., MQTT, Kafka).
Conditions:
Competitive salary package, aligned with experience and market standards.
Flexible work arrangements.
Generous paid time off and standard public holidays.
02 Декабря
Ташкент
Компания "NAJOT TA’LIM MARKAZI" Vazifalar: — Data analitika yo‘nalishida dars berish; — Amaliy loyihalar orqali bilim ulashish; —...
01 Декабря
Lead Data Engineer( Alif Tech )
Ташкент
Компания "Alif Tech" О команде: Мы создаем инновационные продукты, используя технологии машинного обучения и искусственного интеллекта. Наша...
02 Декабря
Ташкент
Компания "Alif Tech" О команде: Мы создаем инновационные продукты, используя технологии машинного обучения. Наша команда состоит из опытных...
03 Декабря
Ташкент
Компания "Andersen" Andersen is hiring a QA Engineer for a major payment platform. The role involves improving reliability, security, and user...
05 Декабря
Ташкент
Компания "ИП ООО Global Solutions" Обязанности: Создание кейсов по регрессионному, функциональному и интеграционным тестам. Также...
Вакансия размещена в отрасли